Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire de Théorie spectrale et géométrie (Grenoble)

Table des matières de ce volume | Article précédent | Article suivant
François Fillastre
Christoffel and Minkowski problems in Minkowski space
Séminaire de Théorie spectrale et géométrie (Grenoble), 32 (2014-2015), p. 97-114, doi: 10.5802/tsg.305
Article PDF
Mots clés: Area measures, convex sets, Lorentzian geometry, Globally hyperbolic spacetime

Résumé - Abstract

For convex sets in the Lorentzian Minkowski space bounded by space-like hyperplanes, it is possible to define area measures, similarly to the classical definition for convex bodies in the Euclidean space. Here the measures are defined on the hyperbolic space rather than on the round sphere. We are particularly interested by convex sets invariant under the action of isometries groups of the Minkowski space, so that the measures can be defined on compact hyperbolic manifolds. We can then look at the Christoffel and the Minkowski problems (i.e. particular measures are prescribed) in a general setting. In dimension $(2+1)$, the Christoffel problem include a famous construction by G. Mess. In this dimension, the smooth version of the Minkowski problem already had a positive answer, and we show that this is a specificity of dimension $(2+1)$, while the general problem has a solution in all dimensions.

Bibliographie

[1] T. Barbot, “Globally hyperbolic flat space-times”, J. Geom. Phys. 53 (2005) no. 2, p. 123-165 Article |  MR 2110829 |  Zbl 1087.53065
[2] T. Barbot, F. Béguin & A. Zeghib, “Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space”, Ann. Inst. Fourier (Grenoble) 61 (2011) no. 2, p. 511-591 Cedram |  MR 2895066 |  Zbl 1234.53019
[3] T. Barbot & F. Fillastre, “An assymmetric norm on $H^1(\Gamma ,\mathbb{R}^{d+1})$”, In preparation
[4] C. Berg, “Corps convexes et potentiels sphériques”, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969) no. 6  MR 254789 |  Zbl 0181.38303
[5] T. Bonnesen & W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987, Translated from the German and edited by L. Boron, C. Christenson and B. Smith  MR 920366 |  Zbl 0628.52001
[6] F. Bonsante, “Flat spacetimes with compact hyperbolic Cauchy surfaces”, J. Differential Geom. 69 (2005) no. 3, p. 441-521  MR 2170277 |  Zbl 1094.53063
[7] F. Bonsante & F. Fillastre, “The equivariant Minkowski problem in Minkowski space”, https://arxiv.org/abs/1405.4376v1, 2014
[8] F. Bonsante & A. Seppi, “Spacelike convex surfaces with prescribed curvature in (2+1)-Minkowski space”, https://arxiv.org/abs/1505.06748, 2015
[9] Francesco Bonsante, Catherine Meusburger & Jean-Marc Schlenker, “Recovering the geometry of a flat spacetime from background radiation”, Ann. Henri Poincaré 15 (2014) no. 9, p. 1733-1799 Article |  MR 3245885 |  Zbl 1298.83125
[10] G. Carlier, “On a theorem of Alexandrov”, J. Nonlinear Convex Anal. 5 (2004) no. 1, p. 49-58  MR 2049056 |  Zbl 1077.49029
[11] W. Fenchel & B. Jessen, “Mengenfunktionen und konvexe Körper.”, Danske Videnks. Selsk. Math.-fys. Medd. 16 (1938) no. 3, p. 1-31  JFM 64.0733.05
[12] F. Fillastre, “Fuchsian convex bodies: basics of Brunn-Minkowski theory”, Geom. Funct. Anal. 23 (2013) no. 1, p. 295-333 Article |  MR 3037901 |  Zbl 1271.52009
[13] F. Fillastre & G. Veronelli, “Lorentzian area measures and the Christoffel problem”, to appear Ann. Scuola Norm. Sup. Pisa Cl. Sci., https://arxiv.org/abs/1302.6169v1, 2013
[14] C. Gutiérrez, The Monge-Ampère equation, Progress in Nonlinear Differential Equations and their Applications, 44, Birkhäuser Boston Inc., Boston, MA, 2001 Article |  Zbl 0989.35052
[15] A. Khovanskiĭ & V. Timorin, “On the theory of coconvex bodies”, Discrete Comput. Geom. 52 (2014) no. 4, p. 806-823 Article |  MR 3279551
[16] G. Mess, “Lorentz spacetimes of constant curvature”, Geom. Dedicata 126 (2007), p. 3-45 Article |  MR 2328921 |  Zbl 1206.83117
[17] V. I. Oliker & U. Simon, “Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature”, J. Reine Angew. Math. 342 (1983), p. 35-65  MR 703485 |  Zbl 0502.53038
[18] N. Trudinger & X.-J. Wang, The Monge-Ampère equation and its geometric applications, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM) 7, Int. Press, Somerville, MA, 2008, p. 467–524  MR 2483373
Copyright Cellule MathDoc 2019 | Crédit | Plan du site