Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire de Théorie spectrale et géométrie (Grenoble)

Table des matières de ce volume | Article précédent | Article suivant
Olivier Glorieux
Critical exponent of graphed Teichmüller representations on $\mathbb{H}^2 \times \mathbb{H}^2$
Séminaire de Théorie spectrale et géométrie (Grenoble), 32 (2014-2015), p. 115-135, doi: 10.5802/tsg.306
Article PDF

Résumé - Abstract

In this note we survey different results on critical exponent. After giving the general setting and classical known results we study critical exponent associated to a pair of Teichmüller representations acting on $\mathbb{H}^2 \times \mathbb{H}^2$ by diagonal action. We will give new examples of behaviour of this critical exponent. We finally explain the link of this invariant with Anti-De Sitter geometry.

Bibliographie

[1] Lipman Bers, “Simultaneous uniformization”, Bull. Am. Math. Soc. 66 (1960) no. 2, p. 94-97  MR 111834 |  Zbl 0090.05101
[2] Gérard Besson, Gilles Courtois & Sylvestre Gallot, “Entropies et rigidités des espaces localement symétriques de courbure strictement négative”, Geom. Funct. Anal. 5 (1995) no. 5, p. 731-799  MR 1354289 |  Zbl 0851.53032
[3] Christopher Bishop & Peter W. Jones, “Hausdorff dimension and Kleinian groups.”, Acta Math. 179 (1997) no. 1, p. 1-39  MR 1484767 |  Zbl 0921.30032
[4] Christopher Bishop & Tim Steger, “Three rigidity criteria for $PSL(2,\mathbb{R})$”, Bull. Am. Math. Soc. 24 (1991) no. 1, p. 117-123  MR 1065010 |  Zbl 0739.22010
[5] Francis Bonahon, “Bouts des variétés hyperboliques de dimension 3”, Ann. Math. 124 (1986), p. 71-158  MR 847953 |  Zbl 0671.57008
[6] Francis Bonahon, “The geometry of Teichmüller space via geodesic currents”, Invent. Math. 92 (1988) no. 1, p. 139-162  MR 931208 |  Zbl 0653.32022
[7] Rufus Bowen, “Hausdorff dimension of quasi-circles”, Publ. Math., Inst. Hautes Étud. Sci. 50 (1979) no. 1, p. 11-25 Numdam |  MR 556580 |  Zbl 0439.30032
[8] Jeffrey Brock, “The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores”, J. Am. Math. Soc. 16 (2003) no. 3, p. 495-535  MR 1969203 |  Zbl 1059.30036
[9] Marc Burger, “Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank 2”, Int. Math. Res. Not. 1993 (1993) no. 7, p. 217-225  MR 1230298 |  Zbl 0829.57023
[10] James W Cannon & William P Thurston, “Group invariant Peano curves”, Geom. Topol. 11 (2007) no. 3, p. 1315-1355  MR 2326947 |  Zbl 1136.57009
[11] Françoise Dal’Bo & Inkang Kim, “Shadow lemma on the product of Hadamard manifolds and applications”, Sémin. Théor. Spectr. Géom. 25 (2006-2007), p. 105-119 Cedram |  MR 2478811 |  Zbl 1163.53320
[12] Kurt Falk & Bernd O Stratmann, “Remarks on Hausdorff dimensions for transient limits sets of Kleinian groups”, Tohoku Math. J. 56 (2004) no. 4, p. 571-582  MR 2097162 |  Zbl 1069.30070
[13] Olivier Glorieux, “Behaviour of critical exponent”, https://arxiv.org/abs/1503.09067v1, 2015
[14] Noemi Halpern, “A proof of the collar lemma”, Bull. Lond. Math. Soc. 13 (1981) no. 2, p. 141-144  MR 608099 |  Zbl 0479.30032
[15] Anders Karlsson, “Two extensions of Thurston’s spectral theorem for surface diffeomorphisms”, Bull. Lond. Math. Soc. 46 (2014) no. 2, p. 217-226  MR 3194741
[16] Steven P Kerckhoff, “The asymptotic geometry of Teichmuller space”, Topology 19 (1980) no. 1, p. 23-41  MR 559474 |  Zbl 0439.30012
[17] Steven P Kerckhoff, “The Nielsen realization problem”, Ann. Math. 117 (1983), p. 235-265  MR 690845 |  Zbl 0528.57008
[18] Yuri Kifer, “Large deviations, averaging and periodic orbits of dynamical systems”, Commun. Math. Phys. 162 (1994) no. 1, p. 33-46  MR 1272765 |  Zbl 0797.58068
[19] Gerhard Knieper, “Das Wachstum der Äquivalenzklassen geschlossener Geodätischer in kompakten Mannigfaltigkeiten.”, Arch. Math. 40 (1983), p. 559-568  MR 710022 |  Zbl 0504.53041
[20] Gabriele Link, “Hausdorff dimension of limit sets of discrete subgroups of higher rank Lie groups”, Geom. Funct. Anal. 14 (2004) no. 2, p. 400-432  MR 2062761 |  Zbl 1058.22010
[21] Howard Masur, “Uniquely ergodic quadratic differentials”, Comment. Math. Helv. 55 (1980), p. 255-266  MR 576605 |  Zbl 0436.30034
[22] Katsuhiko Matsuzaki, “Dynamics of Kleinian Groups–The Hausdorff Dimension of Limit Sets”, Trans. Am. Math. Soc. 204 (2001), p. 23-44
[23] Curtis T McMullen, “Hausdorff dimension and conformal dynamics I: Strong convergence of Kleinian groups”, J. Differ. Geom. 51 (1999) no. 3, p. 471-515  MR 1726737 |  Zbl 1023.37028
[24] Geoffrey Mess, “Lorentz spacetimes of constant curvature”, Geom. Dedicata 126 (2007), p. 3-45  MR 2328921 |  Zbl 1206.83117
[25] Peter J Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series 143, Cambridge university press, 1989  MR 1041575 |  Zbl 0674.58001
[26] Samuel J Patterson, “The limit set of a Fuchsian group”, Acta Math. 136 (1976), p. 241-273  Zbl 0336.30005
[27] Frédéric Paulin, Regards croisés sur les séries de Poincaré et leurs applications, Géométrie ergodique, Monographie de L’Enseignement Mathématique 43, Genève: L’Enseignement Mathématique, 2013, p. 93–116
[28] Marc Peigné, “Autour de l’exposant critique d’un groupe kleinien”, https://arxiv.org/abs/1010.6022, 2010  MR 3220550
[29] Jean-François Quint, “Divergence exponentielle des sous-groupes discrets en rang supérieur”, Comment. Math. Helv. 77 (2002) no. 3, p. 563-608  MR 1933790 |  Zbl 1010.22018
[30] Thomas Roblin, “Ergodicité et équidistribution en courbure négative”, Mém. Soc. Math. Fr. (2003) no. 95, p. A-96  MR 2057305 |  Zbl 1056.37034
[31] Thomas Roblin, “Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative”, Isr. J. Math. 147 (2005), p. 333-357  MR 2166367 |  Zbl 1274.37017
[32] Thomas Roblin & Samuel Tapie, Exposants critiques et moyennabilité, Géométrie ergodique, Monographie de L’Enseignement Mathématique 43, Genève: L’Enseignement Mathématique, 2013, p. 61–92  MR 3220551
[33] Andrew Sanders, “Entropy, minimal surfaces, and negatively curved manifolds”, https://arxiv.org/abs/1404.1105, 2014
[34] Richard Schwartz & Richard Sharp, “The correlation of length spectra of two hyperbolic surfaces.”, Commun. Math. Phys. 153 (1993) no. 2, p. 423-430  MR 1218308 |  Zbl 0772.58045
[35] Richard Sharp, “The Manhattan curve and the correlation of length spectra on hyperbolic surfaces.”, Math. Z. 228 (1998) no. 4, p. 745-750  MR 1644452 |  Zbl 0982.37016
[36] Dennis Sullivan, “The density at infinity of a discrete group of hyperbolic motions”, Publ. Math., Inst. Hautes Étud. Sci. 50 (1979), p. 171-202 Numdam |  MR 556586 |  Zbl 0439.30034
[37] Dennis Sullivan, “Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups”, Acta Math. 153 (1984), p. 259-277  MR 766265 |  Zbl 0566.58022
[38] William P Thurston, “Minimal stretch maps between hyperbolic surfaces”, https://arxiv.org/abs/math/9801039, 1998
[39] Cormac Walsh, “The horoboundary and isometry group of Thurston’s Lipschitz metric”, https://arxiv.org/abs/1006.2158v1, 2010  MR 3289705
[40] Scott Wolpert, “The length spectra as moduli for compact Riemann surfaces”, Ann. Math. 109 (1979), p. 323-351  MR 528966 |  Zbl 0441.30055
Copyright Cellule MathDoc 2019 | Crédit | Plan du site