Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire de Théorie spectrale et géométrie (Grenoble)

Table des matières de ce volume | Article précédent | Article suivant
Jean Raimbault
Géométrie et topologie des variétés hyperboliques de grand volume
Séminaire de Théorie spectrale et géométrie (Grenoble), 31 (2012-2014), p. 163-195, doi: 10.5802/tsg.299
Article PDF

Résumé - Abstract

Cet article est un survol autour de deux prépublications récentes [2] et [39], qui se posent la question de l’étude de certains invariants topologiques et géométriques dans des suites d’espaces localement symétriques dont le volume tend vers l’infini. On donne aussi quelques applications à divers modèles de surfaces aléatoires.

Bibliographie

[1] Miklós Abert, “Invariant random subgroups and their applications”, Transparents d’un exposé à l’IHP, http://www.renyi.hu/~abert/IRS_talk.pdf
[2] Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean Raimbault & Iddo Samet, “On the growth of $L^2$-invariants for sequences of lattices in Lie groups”, http://arxiv.org/abs/1210.2961
[3] Miklós Abért & Ian Biringer, “Invariant measures on the space of all Riemannian manifolds”, preprint, 2014
[4] Miklós Abért, Yair Glasner & Bálint Virág, “Kesten’s theorem for invariant random subgroups”, Duke Math. J. 163 (2014) no. 3, p. 465-488 Article |  MR 3165420
[5] Ian Agol, “The virtual Haken conjecture”, Doc. Math. 18 (2013), p. 1045-1087, With an appendix by Agol, Daniel Groves, and Jason Manning  MR 3104553 |  Zbl 1286.57019
[6] Werner Ballmann, Mikhael Gromov & Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser Boston, Inc., Boston, MA, 1985 Article |  MR 823981 |  Zbl 0591.53001
[7] Mikhail Belolipetsky, “Hyperbolic orbifolds of small volume”, A paraître dans les actes de l’ICM 2014, Séoul, http://arxiv.org/abs/1402.5394
[8] Itai Benjamini & Oded Schramm, “Recurrence of distributional limits of finite planar graphs”, Electron. J. Probab. 6 (2001) Article |  MR 1873300 |  Zbl 1010.82021
[9] N. Bergeron & D. Gaboriau, “Asymptotique des nombres de Betti, invariants $l^2$ et laminations”, Comment. Math. Helv. 79 (2004) no. 2, p. 362-395 Article |  MR 2059438 |  Zbl 1061.55005
[10] Ian Biringer & Omer Tamuz, “Unimodularity of Invariant Random Subgroups”, http ://arxiv.org/abs/1402.1042
[11] Béla Bollobás, Random graphs, Cambridge Studies in Advanced Mathematics 73, Cambridge University Press, Cambridge, 2001 Article |  MR 1864966 |  Zbl 0979.05003
[12] Robert Brooks, “Platonic surfaces”, Comment. Math. Helv. 74 (1999) no. 1, p. 156-170 Article |  MR 1677565 |  Zbl 0920.30037
[13] Robert Brooks & Eran Makover, “Random construction of Riemann surfaces”, J. Differential Geom. 68 (2004) no. 1, p. 121-157  MR 2152911 |  Zbl 1095.30037
[14] Claude Chabauty, “Limite d’ensembles et géométrie des nombres”, Bull. Soc. Math. France 78 (1950), p. 143-151 Numdam |  MR 38983 |  Zbl 0039.04101
[15] Laurent Clozel, “Démonstration de la conjecture $\tau $”, Invent. Math. 151 (2003) no. 2, p. 297-328 Article |  MR 1953260 |  Zbl 1025.11012
[16] B. Colbois & Y. Colin de Verdière, “Sur la multiplicité de la première valeur propre d’une surface de Riemann à courbure constante”, Comment. Math. Helv. 63 (1988) no. 2, p. 194-208 Article |  MR 948777 |  Zbl 0656.53043
[17] Harold Donnelly, “On the spectrum of towers”, Proc. Amer. Math. Soc. 87 (1983) no. 2, p. 322-329 Article |  MR 681842 |  Zbl 0512.58038
[18] Amichai Eisenmann & Yair Glasner, “Generic IRS in free groups, after Bowen”, http://arxiv.org/abs/1406.1261
[19] Michael Farber, “Geometry of growth : approximation theorems for $L^2$ invariants”, Math. Ann. 311 (1998) no. 2, p. 335-375 Article |  MR 1625742 |  Zbl 0911.53026
[20] Alexander Gamburd & Eran Makover, On the genus of a random Riemann surface, Complex manifolds and hyperbolic geometry (Guanajuato, 2001), Contemp. Math. 311, Amer. Math. Soc., Providence, RI, 2002, p. 133–140 Article |  MR 1940168 |  Zbl 1059.14040
[21] Tsachik Gelander & Arie Levit, “Counting commensurability classes of hyperbolic manifolds”, Geom. Funct. Anal. 24 (2014) no. 5, p. 1431-1447 Article |  MR 3261631
[22] Étienne Ghys, “Topologie des feuilles génériques”, Ann. of Math. (2) 141 (1995) no. 2, p. 387-422 Article |  MR 1324140 |  Zbl 0843.57026
[23] R. I. Grigorchuk, “Topological and metric types of surfaces that regularly cover a closed surface”, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) no. 3, p. 498-536, 671  MR 1013710 |  Zbl 0686.57001
[24] M. Gromov & I. Piatetski-Shapiro, “Nonarithmetic groups in Lobachevsky spaces”, Inst. Hautes Études Sci. Publ. Math. 66 (1988), p. 93-103 Numdam |  MR 932135 |  Zbl 0649.22007
[25] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser Boston, Inc., Boston, MA, 1999, Based on the 1981 French original [ MR0682063 (85e :53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates  MR 1699320 |  Zbl 0953.53002
[26] David Kazhdan, “Some applications of the Weil representation”, J. Analyse Mat. 32 (1977), p. 235-248  MR 492089 |  Zbl 0445.22018
[27] Jian-Shu Li & John J. Millson, “On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group”, Duke Math. J. 71 (1993) no. 2, p. 365-401 Article |  MR 1233441 |  Zbl 0798.11019
[28] Alexander Lubotzky, “Free quotients and the first Betti number of some hyperbolic manifolds”, Transform. Groups 1 (1996) no. 1-2, p. 71-82 Article |  MR 1390750 |  Zbl 0876.22015
[29] Alexander Lubotzky & Dan Segal, Subgroup growth, Progress in Mathematics 212, Birkhäuser Verlag, Basel, 2003 Article |  MR 1978431 |  Zbl 1071.20033
[30] Colin Maclachlan & Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics 219, Springer-Verlag, New York, 2003  MR 1937957 |  Zbl 1025.57001
[31] Maryam Mirzakhani, “Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus”, J. Differential Geom. 94 (2013) no. 2, p. 267-300  MR 3080483 |  Zbl 1270.30014
[32] Hossein Namazi, Pekka Pankka & Juan Souto, “Distributional limits of Riemannian manifolds and graphs with sublinear genus growth”, Geom. Funct. Anal. 24 (2014) no. 1, p. 322-359 Article |  MR 3177385 |  Zbl 1291.53056
[33] Amos Nevo & Robert J. Zimmer, “A generalization of the intermediate factors theorem”, J. Anal. Math. 86 (2002), p. 93-104 Article |  MR 1894478 |  Zbl 1015.22002
[34] Shin Ohno & Takao Watanabe, “Estimates of Hermite constants for algebraic number fields”, Comment. Math. Univ. St. Paul. 50 (2001) no. 1, p. 53-63  MR 1839965 |  Zbl 1004.11039
[35] Jean-Pierre Otal & Eulalio Rosas, “Pour toute surface hyperbolique de genre $g,\ \lambda _{2g-2}>1/4$”, Duke Math. J. 150 (2009) no. 1, p. 101-115 Article |  MR 2560109 |  Zbl 1179.30041
[36] Peter Petersen, Riemannian geometry, Graduate Texts in Mathematics 171, Springer, New York, 2006  MR 2243772 |  Zbl 1220.53002
[37] Bram Petri, “Random regular graphs and the systole of a random surface”, http://arxiv.org/abs/1311.5140
[38] Jean Raimbault, “Analytic, Reidemeister and homological torsion for congruence three–manifolds”, http://arxiv.org/abs/1307.2845
[39] Jean Raimbault, “On the convergence of arithmetic orbifolds”, http://arxiv.org/abs/1311.5375
[40] Jean Raimbault, “A note on maximal lattice growth in ${\rm SO}(1,n)$”, Int. Math. Res. Not. 2013 (2013) no. 16, p. 3722-3731 Article |  MR 3090707
[41] Ian Richards, “On the classification of noncompact surfaces”, Trans. Amer. Math. Soc. 106 (1963), p. 259-269  MR 143186 |  Zbl 0156.22203
[42] Jonathan D. Rogawski, Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies 123, Princeton University Press, Princeton, NJ, 1990  MR 1081540 |  Zbl 0724.11031
[43] Garrett Stuck & Robert J. Zimmer, “Stabilizers for ergodic actions of higher rank semisimple groups”, Ann. of Math. (2) 139 (1994) no. 3, p. 723-747 Article |  MR 1283875 |  Zbl 0836.22018
[44] Michael E. Taylor, Partial differential equations I. Basic theory, Applied Mathematical Sciences 115, Springer, New York, 2011 Article |  MR 2744150 |  Zbl 1206.35002
[45] Dave Witte Morris, “Introduction to Arithmetic Groups”, http://arxiv.org/abs/math/0106063
Copyright Cellule MathDoc 2017 | Crédit | Plan du site