Center for diffusion of mathematic journals

 
 
 
 

Séminaire de Théorie spectrale et géométrie (Grenoble)

Table of contents for this volume | Previous article | Next article
Roberta Ghezzi; Frédéric Jean
On measures in sub-Riemannian geometry
Séminaire de Théorie spectrale et géométrie (Grenoble), 33 (2015-2016), p. 17-46, doi: 10.5802/tsg.312
Article PDF

Résumé - Abstract

In [9] we give a detailed analysis of spherical Hausdorff measures on sub-Riemannian manifolds in a general framework, that is, without the assumption of equiregularity. The present paper is devised as a complement of this analysis, with both new results and open questions.

Bibliography

[1] Andrei Agrachev, Davide Barilari & Ugo Boscain, “On the Hausdorff volume in sub-Riemannian geometry”, Calc. Var. Partial Differ. Equ. 43 (2012) no. 3-4, p. 355-388 Article
[2] Andrei Agrachev, Davide Barilari & Ugo Boscain, “Introduction to Riemannian and sub-Riemannian geometry (from a Hamiltonian viewpoint)”, Lecture notes available at http://webusers.imj-prg.fr/~davide.barilari/Notes.php, preprint SISSA 09/2012/M. Version Nov 20, 2016
[3] Andrei Agrachev, Ugo Boscain, Jean-Paul Gauthier & Francesco Rossi, “The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups”, J. Funct. Anal. 256 (2009) no. 8, p. 2621-2655 Article
[4] Davide Barilari & Luca Rizzi, “A formula for Popp’s volume in sub-Riemannian geometry”, Anal. Geom. Metr. Spaces 1 (2013), p. 42-57 Article
[5] André Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progress in Mathematics 144, Birkhäuser, 1996, p. 1–78
[6] Dmitri Burago, Yuri Burago & Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics 33, American Mathematical Society, 2001 Article
[7] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer, 1969
[8] Roberta Ghezzi & Frédéric Jean, Hausdorff measure and dimensions in non equiregular sub-Riemannian manifolds, Geometric control theory and sub-Riemannian geometry, Springer INdAM Series 5, Springer, 2014, p. 201–218 Article
[9] Roberta Ghezzi & Frédéric Jean, “Hausdorff volume in non equiregular sub-Riemannian manifolds”, Nonlinear Anal. 126 (2015), p. 345-377 Article
[10] Nicola Gigli, Andrea Mondino & Giuseppe Savaré, “Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows”, Proc. Lond. Math. Soc. 111 (2015) no. 5, p. 1071-1129 Article
[11] Gian Paolo Leonardi, Séverine Rigot & Davide Vittone, “Isodiametric sets in the Heisenberg group”, Rev. Mat. Iberoam. 28 (2012) no. 4, p. 999-1024 Article
[12] Valentino Magnani, “On a measure-theoretic area formula”, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) no. 4, p. 885-891 Article
[13] Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs 91, American Mathematical Society, 2002
[14] Ludovic Rifford, Sub-Riemannian Geometry and Optimal Transport, SpringerBriefs in Mathematics, Springer, 2014
[15] Séverine Rigot, “Isodiametric inequality in Carnot groups”, Ann. Acad. Sci. Fenn. Math. 36 (2011) no. 1, p. 245-260 Article
[16] Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University 3, Australian National University Centre for Mathematical Analysis, 1983
Copyright Cellule MathDoc 2019 | Credit | Site Map