Center for diffusion of mathematic journals

 
 
 
 

Séminaire de Théorie spectrale et géométrie (Grenoble)

Table of contents for this volume | Previous article | Next article
Antoine Clais
Propriétés combinatoires du bord d’un groupe hyperbolique
Séminaire de Théorie spectrale et géométrie (Grenoble), 32 (2014-2015), p. 73-96, doi: 10.5802/tsg.304
Article PDF
Class. Math.: 20F67, 30L10
Keywords: Bord d’un groupe hyperbolique, analyse quasi-conforme, modules combinatoires

Résumé - Abstract

Le but de ce survol est de présenter les modules combinatoires récemment utilisés pour étudier les propriétés quasi-conformes des bords des groupes hyperboliques. Dans un premier temps, on rappellera quelques résultats et questions de rigidité bien connus qui ont motivés l’introduction de ces outils. Puis on définira les modules combinatoires et la propriété de Loewner combinatoire qui offrent une nouvelle approche pour résoudre des problèmes ouverts depuis longtemps. Enfin, on décrira des applications concrètes de ces outils à travers quelques résultats récents et questions ouvertes.

Bibliography

[1] Benjamin Beeker & Nir Lazarovich, “Sphere boundaries of hyperbolic groups”, https://arxiv.org/abs/1512.00866, 2016  MR 3546458
[2] Riccardo Benedetti & Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992 Article |  MR 1219310 |  Zbl 0768.51018
[3] Mario Bonk & Bruce Kleiner, “Quasisymmetric parametrizations of two-dimensional metric spheres”, Invent. Math. 150 (2002) no. 1, p. 127-183 Article |  MR 1930885 |  Zbl 1037.53023
[4] Mario Bonk & Bruce Kleiner, “Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary”, Geom. Topol. 9 (2005), p. 219-246 Article |  MR 2116315 |  Zbl 1087.20033
[5] Marc Bourdon, “Mostow type rigidity theorems”, to appear in Handbook of Group Actions
[6] Marc Bourdon, “Immeubles hyperboliques, dimension conforme et rigidité de Mostow”, Geom. Funct. Anal. 7 (1997) no. 2, p. 245-268 Article |  MR 1445387 |  Zbl 0876.53020
[7] Marc Bourdon & Bruce Kleiner, “Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups”, Groups Geom. Dyn. 7 (2013) no. 1, p. 39-107 Article |  MR 3019076
[8] Marc Bourdon & Hervé Pajot, “Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings”, Proc. Amer. Math. Soc. 127 (1999) no. 8, p. 2315-2324 Article |  MR 1610912 |  Zbl 0924.30030
[9] Marc Bourdon & Hervé Pajot, “Rigidity of quasi-isometries for some hyperbolic buildings”, Comment. Math. Helv. 75 (2000) no. 4, p. 701-736 Article |  MR 1789183 |  Zbl 0976.30011
[10] Marc Bourdon & Hervé Pajot, “Cohomologie $l_p$ et espaces de Besov”, J. Reine Angew. Math. 558 (2003), p. 85-108 Article |  MR 1979183 |  Zbl 1044.20026
[11] Brian H. Bowditch, “Cut points and canonical splittings of hyperbolic groups”, Acta Math. 180 (1998) no. 2, p. 145-186 Article |  MR 1638764 |  Zbl 0911.57001
[12] Michelle Bucher, Marc Burger & Alessandra Iozzi, A dual interpretation of the Gromov-Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, Trends in harmonic analysis, Springer INdAM Ser. 3, Springer, Milan, 2013, p. 47–76 Article |  MR 3026348 |  Zbl 1268.53056
[13] James W. Cannon & Eric L. Swenson, “Recognizing constant curvature discrete groups in dimension $3$”, Trans. Amer. Math. Soc. 350 (1998) no. 2, p. 809-849 Article |  MR 1458317 |  Zbl 0910.20024
[14] Matias Carrasco Piaggio, “On the conformal gauge of a compact metric space”, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013) no. 3, p. 495-548 (2013)  MR 3099984 |  Zbl 1283.30072
[15] Antoine Clais, “Combinatorial Modulus on Boundary of Right-Angled Hyperbolic Buildings”, Anal. Geom. Metr. Spaces 4 (2016) Article |  MR 3458960
[16] Antoine Clais, “Conformal dimension on boundary of right-angled hyperbolic buildings”, https://arxiv.org/abs/1602.08611, 2016  MR 3458960
[17] Michel Coornaert, Thomas Delzant & Athanase Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer-Verlag, Berlin, 1990, Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary  MR 1075994 |  Zbl 0727.20018
[18] Étienne Ghys & Pierre de la Harpe, Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math. 83, Birkhäuser Boston, Boston, MA, 1990, p. 27–45 Article |  Zbl 0731.20025
[19] Mikhael Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, 1987, p. 75–263 Article |  MR 919829 |  Zbl 0634.20015
[20] Peter Haïssinsky, “Empilements de cercles et modules combinatoires”, Ann. Inst. Fourier (Grenoble) 59 (2009) no. 6, p. 2175-2222 Cedram |  MR 2640918 |  Zbl 1189.30080
[21] Peter Haïssinsky, “Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner$\ldots $]”, Astérisque (2009) no. 326, p. Exp. No. 993, ix, 321-362 (2010), Séminaire Bourbaki. Vol. 2007/2008  MR 2605327 |  Zbl 1275.20046
[22] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 Article |  MR 1800917 |  Zbl 0985.46008
[23] Juha Heinonen & Pekka Koskela, “Quasiconformal maps in metric spaces with controlled geometry”, Acta Math. 181 (1998) no. 1, p. 1-61 Article |  MR 1654771 |  Zbl 0915.30018
[24] Stephen Keith & Tomi J. Laakso, “Conformal Assouad dimension and modulus”, Geom. Funct. Anal. 14 (2004) no. 6, p. 1278-1321 Article |  MR 2135168 |  Zbl 1108.28008
[25] Bruce Kleiner, The asymptotic geometry of negatively curved spaces : uniformization, geometrization and rigidity, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, p. 743–768  MR 2275621 |  Zbl 1108.30014
[26] Jean-François Lafont, “Rigidity of hyperbolic $P$-manifolds : a survey”, Geom. Dedicata 124 (2007), p. 143-152 Article |  MR 2318542 |  Zbl 1121.53029
[27] Charles Loewner, “On the conformal capacity in space”, J. Math. Mech. 8 (1959), p. 411-414  MR 104785 |  Zbl 0086.28203
[28] John M. Mackay, “Spaces and groups with conformal dimension greater than one”, Duke Math. J. 153 (2010) no. 2, p. 211-227 Article |  MR 2667133 |  Zbl 1273.30056
[29] John M. Mackay, “Conformal dimension via subcomplexes for small cancellation and random groups”, to appear in Math. Annalen., https://arxiv.org/abs/1409.0802, 2014  MR 3466856
[30] John M. Mackay & Jeremy T. Tyson, Conformal dimension, University Lecture Series 54, American Mathematical Society, Providence, RI, 2010, Theory and application  MR 2662522 |  Zbl 1201.30002
[31] John M. Mackay, Jeremy T. Tyson & Kevin Wildrick, “Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets”, Geom. Funct. Anal. 23 (2013) no. 3, p. 985-1034 Article |  MR 3061778 |  Zbl 1271.30032
[32] Vladimir Markovic, “Criterion for Cannon’s conjecture”, Geom. Funct. Anal. 23 (2013) no. 3, p. 1035-1061 Article |  MR 3061779 |  Zbl 1276.20051
[33] George D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Études Sci. Publ. Math. (1968) no. 34, p. 53-104 Numdam |  MR 236383 |  Zbl 0189.09402
[34] Pierre Pansu, “Dimension conforme et sphère à l’infini des variétés à courbure négative”, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989) no. 2, p. 177-212  MR 1024425 |  Zbl 0722.53028
[35] Pierre Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2) 129 (1989) no. 1, p. 1-60 Article |  MR 979599 |  Zbl 0678.53042
[36] Frédéric Paulin, “Un groupe hyperbolique est déterminé par son bord”, J. London Math. Soc. (2) 54 (1996) no. 1, p. 50-74 Article |  MR 1395067 |  Zbl 0854.20050
[37] Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, N.J., 1981, p. 465–496  MR 624833 |  Zbl 0567.58015
[38] William P. Thurston, “The Geometry and Topology of Three-Manifolds”, Notes of Princeton University, http://library.msri.org/books/gt3m/, 1980
[39] Jeremy T. Tyson, “Quasiconformality and quasisymmetry in metric measure spaces”, Ann. Acad. Sci. Fenn. Math. 23 (1998) no. 2, p. 525-548  MR 1642158 |  Zbl 0910.30022
[40] Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971  MR 454009
[41] Jussi Väisälä, “Quasi-Möbius maps”, J. Analyse Math. 44 (1984/85), p. 218-234 Article |  MR 801295
[42] Xiangdong Xie, “Quasi-isometric rigidity of Fuchsian buildings”, Topology 45 (2006) no. 1, p. 101-169 Article |  MR 2170496 |  Zbl 1083.51008
Copyright Cellule MathDoc 2018 | Credit | Site Map