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LIMITING CONFIGURATIONS FOR SOLUTIONS OF
HITCHIN’S EQUATION

Rafe Mazzeo, Jan Swoboda, Hartmut Weiß & Frederik Witt

Abstract. — We review recent work on the compactification of the moduli
space of Hitchin’s self-duality equation. We study the degeneration behavior near
the ends of this moduli space in a set of generic directions by showing how limiting
configurations can be desingularized. Following ideas of Hitchin, we can relate the
top boundary stratum of this space of limiting configurations to a Prym variety.
A key role is played by the family of rotationally symmetric solutions to the self-
duality equation on C, which we discuss in detail here.

1. Introduction

The moduli space of Higgs bundles, introduced by Hitchin [22] and Simp-
son [41], is a well investigated object in algebraic geometry and topol-
ogy. We wish here to study it from the viewpoint of Riemannian geome-
try. Hitchin showed that there exists a natural hyperkähler metric on the
smooth locus of the moduli space; in many cases the moduli space has
no singularities and the metric is complete. Its asymptotics are still not
well understood, and we survey here some recent approaches to a set of
questions about the behavior of this metric near the ends of this moduli
space.

There are several reasons to study this metric carefully. The first is to
understand the L2-cohomology of this space. Hausel proved [20] that the
image of the compactly supported cohomology in the ordinary cohomology
vanishes, leading him to conjecture that the L2-cohomology of the Higgs
bundle moduli space must vanish. This was made in analogy with Sen’s
conjecture about the L2-cohomology of the monopole moduli spaces [39].

Acknowledgements: RM supported by NSF Grant DMS-1105050, JS supported by DFG
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Hitchin proved a rather general result [26] showing that under conditions
satisfied in both these cases, the L2-cohomology vanishes outside the mid-
dle degree. Hausel’s conjecture remains open. Following, for example, the
approach of [21], an understanding of this middle-degree cohomology relies
on some finer knowledge of the metric structure at infinity.

However, this is part of a much broader picture concerning hyperkähler
metrics on algebraic completely integrable systems. Indeed, the work of
Gaiotto, Moore and Neitzke [16, 17] hints at an asymptotic development
of this hyperkähler metric g, where the leading term is a so-called semiflat
metric and the correction terms decay at increasingly fast exponential rates.
The exponents and coefficients of these correction terms are described in
terms of expressions coming from a wall-crossing formalism, but these are
unfortunately a priori divergent. Clarifying this circle of ideas is a high
priority.

Our goal here is to review the main result of [31], which constructs a
dense open subset near infinity in the moduli space of Hitchin’s self-duality
equations. The degeneration behavior of generic solutions is captured by
the notion of limiting configurations. These constitute a family of singular
solutions to the self-duality equations which give a geometric realization
of the elements of the top stratum in the compactification of the moduli
space. As a second step, we present a desingularization theorem for limiting
configurations. We present here an alternate description of these limiting
configurations, different than the one one given in [31]; the approach here
was communicated to us by Hitchin [27], and we are grateful to him for
allowing us to use it here. We review this desingularization result and con-
clude with a sketch of what these results indicate about the asymptotic
behavior of the hyperkähler metric; complete proofs of this will appear in
a subsequent paper.

The most pressing question is to understand the metric asymptotics in
all the remaining “non-generic” cases. This parallels the story of the mod-
uli space of SU(2)-monopole metrics of charge k studied by Bielawski. Our
genericity condition corresponds to a multi-monopole breaking up into k
monopoles of charge one, cf. [4]. In this “free” region the natural hyper-
kähler metric is asymptotic to the so-called Gibbons-Manton metric [5].
For the general case which involves so-called clusters (where monopoles
break up into monopoles of smaller charge but not necessarily equal to
one), Bielawski found hyperkähler metrics approximating the natural hy-
perkähler metric at an exponential rate [6].
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2. Holomorphic bundles with Higgs fields

In this section we review some relevant background. A more complete
introduction can be found, for example, in the appendix in [46]. For gen-
eralities on hermitian holomorphic vector bundles see [29].

2.1. Stable bundles

Let X be a closed Riemann surface, i.e. a compact (orientable) surface
endowed with a complex structure. To streamline the discussion we always
assume that the genus γ of X is at least 2. We also fix a complex vector
bundle E → X of rank r = r(E) and degree d = d(E). The pair (r, d) de-
termines E as a smooth bundle. Given the holomorphic structure on X it is
natural to classify the holomorphic structures on E. These are characterized
in terms of pseudo-connections, i.e., C-linear maps ∂̄E : Ω0(E) → Ω0,1(E)
such that ∂̄E(fs) = ∂̄f ⊗ s + f∂̄Es for any complex-valued smooth func-
tion f and section s of E. Given such a pseudo-connection we can define
a complex horizontal subspace of the tangent space of E. Together with
the complex structure of the fibres we therefore obtain an almost complex
structure on TE. The integrability condition for this is ∂̄E ◦ ∂̄E = 0 (see for
instance [29, Proposition I.3.7]) which on a Riemann surface holds trivially
for dimensional reasons. Note in passing that any pseudo-connection arises
as the (0, 1)-part of a full covariant derivative dA = ∂A + ∂̄A. A complex
automorphism g ∈ Gc := Aut(E) acts on a holomorphic structure by

∂̄gE := g−1 ◦ ∂̄E ◦ g.

VOLUME 31 (2012-2014)
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The associated moduli space

Nr,d = {pseudo-connections ∂̄E}/Gc

is not Hausdorff in general. To obtain a well-behaved quotient one must
restrict attention to the subclass of stable bundles, following ideas from
Mumford’s geometric invariant theory [33, 37]. For a general complex vector
bundle, we define the slope of E to be the number µ(E) = d(E)/r(E). We
say that E is (slope-)stable if and only if

µ(F ) < µ(E).

for any proper non-trivial holomorphic subbundle F of E. Themoduli space
of stable bundles N s

r,d is a smooth quasi-projective variety of (complex)
dimension 1 + r2(γ − 1); this space is projective if r and d are coprime.

A completely different approach to the moduli space of stable bundles
was developed by Atiyah, Bott and Donaldson [1, 10]. This builds upon the
seminal work of Narasimhan and Seshadri [35], who proved that a stable
holomorphic structure on E is equivalent to a projectively flat unitary
connection. More concretely, fix a hermitian metric H on E. A unitary
connection A is projectively flat if the induced connection on the associated
prinicipal PU(r)-bundle is flat. This may also be described directly in terms
of the curvature FA of A by the condition

(2.1) FA = −iµ · ω.

Letting G = {g ∈ Gc | gg∗ = IdE} denote the space of unitary gauge
transformations, then there is a corresponding moduli space

(2.2) Nirr
r,d = {A irreducible solution to (2.1)}/G.

When (r, d) are coprime again, this is a smooth manifold of (real) dimension
2 + 2r2(γ − 1) and is diffeomorphic to N s

r,d.

Remark. — If (E, ∂̄E , H) is a hermitian holomorphic vector bundle,
there is a unique connection A = A(H, ∂̄E), called the Chern connection,
on E which is unitary and satisfies ∂̄A = ∂̄E . If the underlying holomor-
phic structure is clear we shall simply write AH or even A for the Chern
connection associated with H. This gives an action of Gc on H-unitary
connections by setting Ag = A(H, ∂̄gE) (see [29, Chapter VII]). Donaldson
showed that if (E, ∂̄) is stable, then we can find in any complex gauge
orbit of the Chern connection a projectively flat unitary connection. This
connection is not in general the same as the Chern connection for H. It is
unique only up to H-unitary gauge transformations. The precise choice of
the hermitian background metric H is immaterial. Indeed, complex gauge
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transformations act transitively on the space of hermitian metrics, so a
change in the metric will only affect the representative of the orbit solving
Eq. (2.1), but not the moduli space itself. Equivalently, we can regard the
holomorphic structure ∂̄E as being fixed and then consider Eq. (2.1) as an
equation on H via the assignement H 7→ A(H, ∂̄). Thus, starting with an
arbitrary metric H, we find a complex gauge transformation g – unique up
to H-unitary transformations – such that the Chern connection A(Hg, ∂̄E)
solves Eq. (2.1).

2.2. Higgs bundles

The cotangent bundle of a complex manifold carries a natural holo-
morphic symplectic structure, i.e., a closed non-degenerate holomorphic
2-form. If this is a real-analytic Kähler manifold, then there exists a hy-
perkähler metric in a neighbourhood of the zero section of the cotangent
bundle which generates this holomorphic symplectic structure [12, 45] (see
also Section 5 for the definition of hyperkähler metrics). It is straightfor-
ward, using the linearization of the equation ∂̄E ◦ ∂̄E = 0 to compute that
TEN s

r,d = H1(X,End(E)). By Serre duality, the fibres of this cotangent
bundle are

T ∗ENr,d = H1(X,End(E))∗ ∼= H0(X,End(E)⊗K),

where K → X is the canonical line bundle of X. Sections of T ∗ENr,d, i.e.,
holomorphic bundle maps Φ : E → E ⊗K, are called Higgs fields. A Higgs
bundle is a pair consisting of a holomorphic vector bundle (E, ∂̄E) and a
Higgs field Φ on it.

As for stable bundles, this picture has a gauge theoretic interpretation
given by Hitchin’s self-duality equations. We describe these now. Fix a
hermitian metric H on E. We consider pairs (A,Φ), where A is a unitary
connection and Φ ∈ Ω1,0(End(E)) is an (a priori smooth) Higgs field. The
equations we require these to satisfy are

(2.3) FA + [Φ ∧ Φ∗] = −iµ · ω, ∂̄AΦ = 0.

These arose as a dimensional reduction of the instanton equation on R4.
The term “Higgs field” was coined in analogy with the three-dimensional
counterpart of Eq. (2.3), the so-called Bogomolny equations. Solutions are
absolute minimizers of a dimensionally reduced Euclidean Yang-Mills-Higgs
functional in dimension three [28].

VOLUME 31 (2012-2014)
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The second equation of (2.3) states that Φ is holomorphic with respect to
the holomorphic structure defined by ∂̄A. Hence a solution of (2.3) specifies
a Higgs bundle (E, ∂̄A,Φ). Omitting the Higgs field, we simply recover
Eq. (2.1). Conversely, any Higgs bundle (E,Φ) where E is stable in the
sense of Section 2.1 arises as an irreducible solution of Eq. (2.3). Here
irreducibility means that (E,A,Φ) does not admit a decomposition into
a direct sum of two hermitian bundles (E1 ⊕ E2, A1 ⊕ A2,Φ1 ⊕ Φ2) with
unitary connections Ai and Higgs fields Φi ∈ Ω1,0(End(Ei)). On the other
hand, not every Higgs bundle which arises from an irreducible solution of
Eq. (2.3) necessarily has an underlying stable holomorphic vector bundle.
To capture all the irreducible solutions (A,Φ) we therefore generalize the
stability condition. Thus we say that (E,Φ) is a stable Higgs bundle if for
any proper non-trivial holomorphic subbundle F of E with Φ(F ) ⊂ F ⊗K
we have µ(F ) < µ(E). This reduces to the usual notion of stability when
Φ = 0. The moduli space

Ms
r,d = {(E,Φ) | stable Higgs bundle}/Gc

is a quasi-projective variety of (complex) dimension 2 + 2r2(γ − 1) and
contains T ∗Nr,d as an open dense subset [22, 38, 41]. In particular, for a
generic Higgs bundle the underlying holomorphic vector bundle is stable in
the sense of Section 2.1. We refer to [22, Section 3] for examples of a Higgs
bundle (E,Φ) where E is not stable. On the other hand,

Mirr
r,d = {(A,Φ) an irreducible solution to (2.3)}/G

is a smooth manifold of (real) dimension 4 + 4r2(γ− 1) which is diffeomor-
phic toMs

r,d.

Remark. — From another point of view we can think of the Higgs bun-
dle moduli space as the moduli space of irreducible and projectively flat
complex connections [11, 9], i.e.

Ms
r,d = {A irreducible complex solution of (2.1)}/Gc.

We therefore obtain a Narasimhan-Seshadri type theorem for complex
connections. This has been generalized from Riemann surfaces to higher-
dimensional compact Kähler manifolds by Simpson in his quest to parame-
trize the flat complex connections which arise in the complex variation of a
Hodge structure. For higher dimensions it is necessary to impose the extra
condition Φ ∧ Φ = 0 (which is trivially satisfied on a Riemann surface).

In this paper we consider a variant of the self-duality equations where
we work in the fixed determinant case. If A is a unitary connection, then
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its curvature FA decomposes as

FA = F⊥A + 1
r

Tr(FA)⊗ IdE ,

where F⊥A ∈ Ω2(su(E)) is the trace-free part of the curvature and su(E) ⊆
End(E) denotes the bundle of traceless skew-hermitian endomorphisms.
The central part Tr(FA) ∈ Ω2(iR) is precisely equal to the curvature of
the induced connection on detE. Let us fix a background connection A0
from now on and consider only those connections A which induce the same
connection on detE as A0 does, i.e. A = A0 + α where α ∈ Ω1(su(E)).
In other words, any such A is trace-free “relative” to A0. We may now
consider the pair of equations

(2.4)
F⊥A + [Φ ∧ Φ∗] = 0,

∂̄AΦ = 0,

where A is trace-free relative to A0. Since the trace of a holomorphic Higgs
field is constant, we may as well restrict to trace-free Higgs fields Φ ∈
Ω1,0(End0(E)). There always exists a unitary connection A0 on E such
that TrFA0 = −ir(E)ω, and with this as background connection, a solution
of (2.4) provides a solution to (2.3). Of course we now need to restrict to
gauge transformations of unit determinant Gc0 and G0 when building the
moduli spaces. The precise choice of A0 is immaterial in the sense that the
moduli spaces corresponding to two such choices are isomorphic.

In the sequel we specialize not only to the fixed determinant case, but
also to rank 2 bundles. This is the case originally considered by Hitchin.
We denote by Λ → X a fixed degree d line bundle; this carries a natural
connection induced by A0. In particular, it is holomorphic. We consider
rank 2 stable Higgs bundles (E,Φ) with detE = Λ (as holomorphic line
bundles). The moduli space of all such bundles is denotedMΛ, where for
simplicity we drop any reference to stability or irreducibility.

2.3. Parabolic Higgs bundles

There is an extension of the definition of stability of bundles to the set-
ting of punctured Riemann surfaces. We recall this briefly since we make
auxilliary use of this later. Parabolic bundles were first introduced by Se-
shadri [40], [32]. The corresponding notion of a parabolic Higgs bundle was
introduced by Simpson in [42] and developed further in [36, 8].

VOLUME 31 (2012-2014)
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Definition 2.1. — A parabolic structure on a holomorphic vector bun-
dle E over X with marked points p = {p1, . . . , pn} ⊂ X consists of the
following data:

• a filtration Ep = F 1
p ) . . . ) F

lp
p ) 0 at p ∈ p;

• a system of associated weights 0 6 α1 < . . . < αlp < 1.

The parabolic degree of E is defined as

pardeg(E) = d(E) +
∑
pi∈p

αi(dimFi − dimFi+1).

A parabolic Higgs bundle (E,Φ) consists of a holomorphic bundle E with
parabolic structure and a Higgs field which is nilpotent with respect to the
flags at the marked points pi ∈ p, i.e., Φ(F ip) ⊂ F i+1

p ⊗K. (Alternately, one
may require that Φ(Fj) ⊂ Fj ⊗K.)

To motivate this definition, consider the punctured surface X× = X \ p.
There exists a discrete subgroup Γ of PSL(2,R) acting freely on the upper
half-plane H2 so that X× = H2/Γ and Γ ∼= π1(X×). The elements of Γ
corresponding to loops around the punctures are of parabolic type, which
means that their extensions to H2 = H2 ∪ ∂∞H2 have exactly one fixed
point on the boundary ∂∞H2, see for instance [3, Chapter A]. If we denote
by (H2)+ the union of H2 with all fixed points of parabolic elements in
Γ, then X = (H2)+/Γ is a compact Riemann surface with marked points
p1, . . . , pn, where each pj is the ‘endpoint’ of a parabolic cusp, whence the
appellation parabolic bundle. The isotropy group of a parabolic cusp under
the action of Γ is cyclic. Let ai denote the loop in π1(X×) = Γ induced
by a generator of the cyclic group corresponding to pi. Then a unitary
representation ρ : Γ→ U(r) gives rise to matrices

(2.5) ρ(ai) =

 exp(2πiα1) 0
. . .

0 exp(2πiαr)


for a suitably chosen unitary basis e1, . . . , er of E near pi. This gives the
weighted flag.

Remark. — There exists a natural notion of stability for parabolic
(Higgs) bundles, just as in the unmarked case, leading to moduli spaces
of stable parabolic Higgs structures.
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2.4. Spectral curves

The map
det :MΛ → H0(X,K2), [E,Φ] 7→ det Φ

is proper and surjective and defines the so-called Hitchin fibration ofMΛ.
If q ∈ H0(X,K2) has simple zeroes, the fibre det−1(q) can be identified
with the Prym variety of the spectral curve associated with q [22, 25].

Since the zeroes of q are assumed to be simple,

X̂q := {ax ∈ T ∗X | a2
x = q(x)}

defines a smooth embedded curve, which is called the spectral curve asso-
ciated with q. We write this simply as X̂ if there is no risk of confusion.
The projection π(ax) = x is a twofold cover π : X̂ → X ramified at the
divisor q−1(0) in X. By the Riemann-Hurwitz formula, the genus of X̂ is
4γ − 3. We denote by σ : X̂ → X̂ the involution which interchanges the
sheets of π. The pull-back bundle π∗K admits a tautological holomorphic
section ax ∈ X̂ 7→ ax ∈ Kx = (π∗K)x which we suggestively denote by √q.
Now let

PrymΛ(X̂) = {holomorphic line bundles L→ X̂ | det π∗L = Λ⊗K−1}

where π∗ denotes the direct image of the holomorphic line bundle L, cf.
[18, §3b] or [24, Chapter 2.4]. Since X̂ → X has degree two and L → X̂

is a holomorphic line bundle, π∗L → X is a rank 2 holomorphic vector
bundle. For instance, π∗OX̂ = OX ⊕K−1 ([19, Ex. IV.2.6]). If Λ = O we
recover the Prym variety of X̂; by definition, this is the 3γ−3-dimensional
subvariety of the Jacobian of X̂ defined by the property σ∗L = L∗ [34].

To define Higgs bundles from elements in PrymΛ(X̂) we first choose a
holomorphic square root K1/2 of K. For L ∈ PrymΛ(X̂), set M = L ⊗
π∗K1/2 and define E = π∗M . By the projection formula [18, Lemma 10],
multiplication by √q induces a holomorphic map M → M ⊗ π∗K which
descends to a holomorphic map

Φ : E = π∗(M)→ E ⊗K = π∗(M ⊗ π∗K).

Since M is associated with a Prym variety, this Higgs field is trace free,
and satisfies det Φ = q. Note also that

detE = det(π∗L)⊗K−1/2 = Λ,

whence E has the right determinant. Conversely, let (E,Φ) be a Higgs
bundle on X with detE = Λ and det Φ = q. Pulling back the Higgs bundle
to the spectral curve X̂q we obtain a holomorphic rank 1 subbundle T ⊂
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ker(π∗Φ−√q). Then E = π∗M for M = T ⊗ π∗K, see [2, Remark 3.7], so
that L = M ⊗ π∗K−1/2 ∈ PrymΛ(X̂).

3. Limiting configurations

As the name suggests, limiting configurations are the structures which
arise as limits of solutions of the Hitchin equations. Conversely, it is possible
to desingularize such limiting configurations to obtain ‘large’ elements in
the Higgs bundle moduli space. We wish here to explain this further and
discuss the existence of such limiting configurations.

3.1. Motivation

Following [22] we know that the function

MΛ → R, [A,Φ] 7→ ‖Φ‖2L2

is a proper Morse-Bott function. In other words, if (An,Φn) is a sequence of
solutions to Hitchin’s equations, and if the L2 norms of the Φn are bounded,
then these solutions lie in a compact subset of MΛ. On the other hand,
fixing the Higgs field Φ, then Hitchin’s existence theorem guarantees the
existence of a pair (At, tΦt) in the complex gauge orbit of (AH , tΦ) (in
particular, Φt is complex gauge equivalent to Φ), satisfying

F⊥At
+ t2[Φt ∧ Φ∗t ] = 0, ∂̄At

Φt = 0.

This family of solutions approaches the end of the moduli space as t→∞.
To get a feeling for how degenerations occur, assume that (At,Φt) →

(A∞,Φ∞) as t↗∞ in C∞loc (note that we have normalized the Higgs field
tΦt in the solution by dividing by t). Then it necessarily holds that

[Φ∞ ∧ Φ∗∞] = 0, ∂̄A∞Φ∞ = 0.

In particular, Φ∞ is normal, and hence unitarily diagonalizable. Therefore,
at a point p ∈ X where det Φ∞ ∈ H0(X,K2) vanishes, this order of van-
ishing must be at least two; order one vanishing occurs if and only if Φ is
nilpotent at p. However, for generic Higgs fields, det Φ has simple zeroes (we
also say that Φ is simple). This means that Φ∞ must be singular at these
zeroes. Depending on the point of view one takes, cf. Section 2.1, either
the hermitian metric degenerates (so that normality is no longer defined at
p) or else the holomorphic structure breaks down (so det Φ∞ is not holo-
morphic on all of X). Either way, it seems reasonable to expect that FAt
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concentrates near (det Φ∞)−1(0) as t ↗ ∞. This is consistent with recent
results by Taubes [43, 44], who investigated the analogous degeneration
behavior for a three-dimensional analogue of the self-duality equation.

3.2. The fiducial solution

We next study a class of solutions to Hitchin’s equation on C which
are rotationally symmetric in an appropriate sense. We learned about this
family of fiducial solutions from Andy Neitzke, who in joint work with
Gaiotto and Moore [17] described its basic properties. We are grateful to
him for explaining this to us in detail. The symmetry reduces Hitchin’s
equation to a Painlevé type III ordinary differential equation, and from
that perspective this solution can be traced back to work of Mason and
Woodhouse [30].

Our paper [31] presents a derivation of these solutions and their basic
properties, but we do so again here from a different and simpler perspective.
Indeed, as we explain here, the fiducial solutions are obtained rather easily
if one interprets Hitchin’s equations as equations for the hermitian metric
when restricted to the complex gauge orbit of a configuration (A,Φ) with
∂̄AΦ = 0. In general, fixing a background hermitian metricH0 on the vector
bundle E, we may identify an arbitrary hermitian metric with a hermitian
endomorphism field H; in the fixed determinant case, this field also satisfies
detH = 1. Let ∗H denote the adjoint taken with respect to the hermitian
metric H. Then

(3.1) F⊥A + ∂̄A(H−1∂AH) + [Φ ∧ Φ∗H ] = 0

if and only if (AH ,Φ)g solves Hitchin’s equation, where g is a complex
gauge transformation which is determined by solving H−1 = gg∗. Note
that g is uniquely determined up to right multiplication by a unitary gauge
transformation.

Fix the holomorphic normal form for a rank-2 Higgs bundle over C whose
determinant has a simple zero in z = 0. More precisely, consider the holo-
morphically trivial rank-2 vector bundle over C and the holomorphic Higgs
field

Φ = ϕdz, ϕ(z) =
(

0 1
z 0

)
;

this has determinant −zdz2. Note that if H0 is the standard constant her-
mitian metric, then the Chern connection is the trivial flat connection,
denoted here by A.

VOLUME 31 (2012-2014)
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We ask first if there exists a configuration (A∞,Φ∞) in the complex
gauge orbit of (A,Φ) satisfying the purely algebraic equation

(3.2) [Φ∞ ∧ Φ∗∞] = 0⇐⇒ [Φ ∧ Φ∗H∞ ] = 0;

here H∞ is a hermitian metric and ∗H∞ is the adjoint with respect to H∞.

We say that a hermitian metric is rotationally symmetric if its represen-
tation H relative to the fixed metric h0 is rotationally symmetric, i.e.,

H(r) =
(
α(r) b(r)
b̄(r) β(r)

)
,

where α, β are real valued, with α > 0 and αβ−|b|2 = 1. A straightforward
calculation shows that
(3.3)

[Φ ∧ Φ∗H ] =
(
α2 − |z|2β2 + 2i Im b2z 2αb− 2βb̄z̄
−2αbz + 2|z|2βb̄ |z|2β2 − α2 − 2i Im b2z

)
dz ∧ dz̄.

We wish to choose H = H∞ so that this vanishes. Since α, β 6= 0, setting
all entries here equal to 0 implies that b ≡ 0, and then that α = r1/2,
β = r−1/2. In other words,

[Φ ∧ Φ∗H∞ ] = 0⇐⇒ H∞ =
(
r1/2 0

0 r−1/2

)
This solution is singular at z = 0. Recalling that the curvature of any
Hermitian metric H is given by

(3.4) ∂̄(H−1∂H) = −
(
∂z̄(β∂zα− b∂z b̄) ∂z̄(β∂zb− b∂zβ)
∂z̄(α∂z b̄− b̄∂zα) ∂z̄(α∂zβ − b̄∂zb)

)
dz ∧ dz̄,

then in particular,

∂̄(H−1
∞ ∂H∞) = −

(
∂z̄(r−1/2∂zr

1/2) 0
0 ∂z̄(r1/2∂zr

−1/2)

)
dz ∧ dz̄ = 0.

This proves the following surprising fact:

Lemma 3.1. — The unique hermitian metricH∞ satisfying [Φ∧Φ∗H∞ ]=
0 on C× is flat and therefore solves the decoupled version of Hitchin’s
equation

∂̄(H−1
∞ ∂H∞) = 0, [Φ ∧ Φ∗H∞ ] = 0.

Setting

g∞ =
(
r−1/4 0

0 r1/4

)
,
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then one has H−1
∞ = g∞g

∗
∞, so from the fact that (Afid

∞ ,Φfid
∞ ) = (A,Φ)g∞ ,

we obtain the expression for the limiting fiducial solution

Afid
∞ = 1

8

(
1 0
0 −1

)(
dz

z
− dz̄

z̄

)
, Φfid

∞ =
(

0 r1/2

zr−1/2 0

)
dz.

Now let us look for nonsingular rotationally symmetric solutions Ht of
Hitchin’s equation

∂̄(H−1
t ∂Ht) + t2[Φ ∧ Φ∗Ht ] = 0, 0 < t <∞.(3.5)

We see that [Φ ∧ Φ∗Ht ] is rotationally symmetric if and only if

Ht =
(
αt 0
0 α−1

t

)
for some function αt = αt(r) > 0. With this reduction, Hitchin’s equation
reduces to the ODE

∂z̄(α−1
t ∂zαt)− t2(α2

t − |z|2α−2
t ) = 0.(3.6)

We let

αt = eht+ 1
2 log(r)

where ht = ht(r) is real-valued. Then (3.6) is equivalent to

0 = ∂z̄∂z(ht + 1
2 log(r))− t2(re2ht − re−2ht)

= 1
4

( d2

dr2 + 1
r

d

dr

)
(ht + 1

2 log(r))− t2(re2ht − re−2ht)

= 1
4
(
h′′t + r−1h′t

)
− t2(re2ht − re−2ht),

and hence finally to

(3.7) h′′t + r−1h′t = 8t2r sinh(2ht).

Now substitute ht(r) = ψ(ρ) with ρ = 8
3 tr

3/2; this transforms (3.7) to the
Painlevé type III equation

(3.8) ψ′′ + ψ′

ρ
= 1

2 sinh(2ψ).

The properties of solutions to (3.8) are well known, see [31] and the ref-
erences therein. There is a unique solution ht to (3.7) satisfying ht(r) +
1
2 log(r)→ 0 as r ↘ 0 and ht(r)→ 0 as r ↗∞.
The hermitian metric Ht then equals

Ht =
(
r1/2eht(r) 0

0 r−1/2e−ht(r)

)
,
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and

H−1
t = gtg

∗
t for gt =

(
r−1/4e−ht(r)/2 0

0 r1/4eht(r)/2

)
.

This yields, finally, the entire family of desingularized fiducial solutions by
the formula (Afid

t ,Φfid
t ) = (A,Φ)gt , so

Afid
t = ft(r)

(
1 0
0 −1

)(
dz

z
− dz̄

z̄

)
,

Φfid
t =

(
0 r1/2eht(r)

zr−1/2e−ht(r) 0

)
dz

where ft(r) = 1
8 + 1

4r∂rht.

We have therefore arrived at the following result:

Theorem 3.2. — For each t ∈ (0,∞) there exists a unique hermitian
metric Ht solving Hitchin’s equation (3.5) such that

(i) Ht is rotationally symmetric, and

(ii) Ht ∼ H∞ =
(
r

1
2 0

0 r−
1
2

)
as r ↗∞.

These metrics correspond to the fiducial solutions (Afid
t ,Φfid

t ).

A byproduct of this approach is that we may now easily derive fiducial
solutions corresponding to Higgs fields Φ, the determinants of which have
zeroes of order greater than one. This touches on the ongoing thesis work
of Laura Fredrickson [13], who is describing the behavior of families of
solutions on C near this degenerate case, i.e., families where the Higgs field
is simple but which limit to these degenerate solutions. She also constructs
fiducial solutions in the higher rank case. More precisely, for k > 1, consider
the Higgs field

Φ =
(

0 1
zk 0

)
dz,

which has determinant −zkdz2. Setting

Ht =
(
αt 0
0 α−1

t

)
we obtain that

[Φ ∧ Φ∗Ht ] =
(
α2
t − |z|2kα−2

t 0
0 |z|2kα−2

t − α2
t

)
dz ∧ dz̄.
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If we let αt = eht+ k
2 log(r), then the same calculation as above leads now to

the ODE

h′′t + r−1h′t = 8t2rk sinh(2ht).(3.9)

With the substitution

ρ = 4tr k
2 +1/(k2 + 1)

this is equivalent to the same Painlevé III equation (3.8) as in the case
where det Φ has a simple zero. The Higgs pair (At,Φt) corresponding to
this rotationally symmetric hermitian metric Ht is now calculated to be

At = ft(r)
(

1 0
0 −1

)(
dz

z
− dz̄

z̄

)
, Φt =

(
0 rk/2eht(r)

zkr−k/2e−ht(r) 0

)
dz

where ft(r) = 1
8 + 1

4r∂rht and ht is a solution of (3.9). The limiting solution
is given by

A∞ = k

8

(
1 0
0 −1

)(
dz

z
− dz̄

z̄

)
, Φ∞ =

(
0 rk/2

zkr−k/2 0

)
dz.

The gluing result from [31] may be implemented using this higher order
fiducial solution. Details will appear elsewhere.

3.3. Construction of limiting configurations

Motivated by the preceding discussion we consider the following model
for degeneration at infinity [31].

Definition 3.3. — Let (E,H,Φ) be a hermitian Higgs bundle, where Φ
is simple. A limiting configuration is a Higgs pair (A∞,Φ∞) which satisfies
the decoupled self-duality equations

(3.10) F⊥A∞ = 0, [Φ∞ ∧ Φ∗∞] = 0, ∂̄A∞Φ∞ = 0

on X×, and which agrees with (Afid
∞ ,Φfid

∞ ) near each point of (det Φ)−1(0)
with respect to some unitary frame for E and holomorphic coordinate sys-
tem such that det Φ = −zdz2 near the zeroes of det Φ.

The main result for limiting configurations is this.

Theorem 3.4. — Let (E,H,Φ) be a Hermitian Higgs bundle with sim-
ple Higgs field. Then in the complex gauge orbit of (AH ,Φ) over X \
(det Φ)−1(0) there exists a limiting configuration (A∞,Φ∞) unique up to
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unitary gauge transformation. Up to a smooth complex gauge transforma-
tion on X the limiting (singular) complex gauge transformation g∞ takes
the form

g∞ =

 |z|− 1
4 0

0 |z|
1
4


near (det Φ)−1(0).

This was proved in [31] analytically, in particular relying on the Fredholm
theory of conic elliptic operators. We present here an alternative approach
using spectral curves which was explained to us by Nigel Hitchin [27], and
we are grateful for his permission to present it here.

Following the notation from Section 2.4, let X̂ be the spectral curve
associated with q = −det Φ. Start with L ∈ PrymΛ(X̂), but now consider
the holomorphic rank 2 bundle Ê = L⊕σ∗L over X̂. Near the ramification
locus (which is the zero locus of √q) we fix a holomorphic trivialization
of L and declare it to be unitary. This determines a hermitian metric ĥ
near these points, which we extend to all of X̂ and set Ĥ = ĥ ⊕ σ∗ĥ.
Finally, with respect to the decomposition of Ê we define a Higgs field by
Φ̂ = diag(√q,−√q). This determines a hermitian Higgs bundle (Ê, Ĥ, Φ̂)
where Φ̂ is normal on X̂ and Ĥ is flat near the ramification locus.

The Z2-action on X̂ generated by σ is covered by a representation

τ : Z2 → GLrC, where τ(σ) =
(
−1 0
0 1

)
in a suitable basis (e, e′). Writing the action of σ on an eigenvector as eiπx,
we obtain the isotropy weights x = 0 and x′ = 1 for this action. Since the
Higgs bundle (Ê, Ĥ, Φ̂) is σ-invariant, it descends to X and defines there
an orbifold hermitian Higgs bundle (E,H,Φ), see [36] and also [7, 15].
In particular, the underlying orbifold bundle has trivializations of the form
D̂×C2/σ×τ on neighbourhoods D = D̂/σ of points in q−1(0). In addition,
if w is a coordinate on D̂, then z = w2 is a coordinate on D.

Orbifold Higgs bundles can be desingularized in a natural way by para-
bolic Higgs bundles with cusps at p = q−1(0). Namely, at a marked point
p with isotropy weights x = 0 and x′ = 1 we consider the bundle E defined
by

E|X\{p} ∪Ψ D × C2
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with clutching function Ψ given in local coordinates by its Z2-equivariant
lifting

Ψ̂ : (D̂ \ {0})× C2 → D × C2

(w, (v1, v2)) 7→ (w2, (w−xv1, w
−x′v2)) = (w2, (v1, w

−1v2)).

Thus E carries a natural parabolic structure which at a marked point p ∈
q−1(0) is given by

(3.11) Ep = C2 ⊃ Ce′ ⊃ {0}
0 6 0 < 1

2 < 1 .

To describe the holomorphic sections of E near p we note that the in-
variant holomorphic sections of (D̂2 × C2)/(σ × τ) with respect to (e, e′)
take the form (s1(w), s2(w)) with s1(w) = s̃1(w2) and s2(w) = ws̃2(w2).
Under the clutching map Ψ this gives a bounded holomorphic section
(s̃1(z), s̃2(z)) of E which extends over 0. In particular, f = e and f ′ = e/w

induce a holomorphic frame for E on the punctured disk D \ {0}. It fol-
lows that π∗Λ2E = π∗(Λ ⊗ K−1), hence Λ2E = Λ ⊗ K−1 for the map
π∗ : Jac(X) → Jac(X̂) between the respective Jacobians is injective [34].
Furthermore, with respect to the frame (f, f ′), the induced hermitian met-
ric H is given by

H =
(

1 0
0 |z|

)
.

As for the Higgs field we find

Φ(z) =
(

0 z

1 0

)
dz

by [36, Section 5A]. Note that Φ is indeed parabolic at z = 0.

To get a holomorphic vector bundle with deteminant Λ we must as in
Section 2.4 twist with the square root K1/2 to get E∞ = E⊗K1/2 with cor-
responding Higgs field Φ∞ : E∞ → E∞ ⊗K1/2. Restricted to X× any line
bundle is holomorphically trivial, and a hermitian metric is just a nowhere
vanishing function h with respect to this trivialization. We trivialize K2 by
q and define h = |qq̄|−2. Taking 4

√
h for a trivialization of K1/2 yields a her-

mitian metric which is given by 1/|z| near the marked points and is locally
of the form ff̄ for a holomorphic function f . In particular, this metric is
flat so that the product metric H∞ on E∞|X× has the same curvature as
H. Near a marked point,

H∞ =
( 1√

|z|
0

0
√
|z|

)
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so the associated Chern connection A∞ is precisely equal to Afid
∞ . Similarly,

writing Φ∞ with respect to the rescaled unitary frame gives the fiducial
Higgs field Φfid

∞ .

To show that (A∞,Φ∞) is complex gauge equivalent to (AH ,Φ) on X×
we may assume (cf. Section 2.1) that modulo a smooth complex gauge
transformation over X our initial hermitian metric H is given by diag(1, 1)
with respect to the frame (f, f ′). Then H∞ = g∗∞Hg∞ on X× where

g∞ =

 |z|− 1
4 0

0 |z|
1
4


near the marked points.

Remark. — This viewpoint is somehow dual to the one in [31]. Indeed,
here we look for a limiting hermitian metric, which then determines a holo-
morphic bundle E∞ endowed with a singular hermitian metric. By contrast,
in [31] we look for a limiting unitary connection; this gives a smooth her-
mitian metric but a singular complex structure.

4. Desingularization by gluing

We now give a brief sketch of the main theorem in [31], which globalizes
the phenomenon that the family of smooth fiducial solutions (Afid

t ,Φfid
t )

desingularize the limiting fiducial solution (Afid
∞ ,Φfid

∞ ).

Theorem 4.1 ([31]). — Suppose that (A∞,Φ∞) is a simple limiting
configuration, i.e., so that det Φ∞ has simple zeroes. Then there exists a
family of solutions to the Hitchin equations (At, tΦt) with At → A∞ and
Φt → Φ∞ in C∞loc at exponential rate in t on the complement of det Φ−1

∞ (0).

These solutions are obtained by gluing (A∞,Φ∞) to the elements of the
family (Afid

t ,Φfid
t ). In fact, it is possible to prove this theorem either by

performing the gluing as just indicated, or else by constructing a desin-
gularizing family of hermitian metrics Ht as solutions to (3.1). These two
approaches are quite close, and there seems to be nothing to recommend
one over the other, but we explain the former.

The steps in the proof follow a familiar pattern. We first construct a
family of approximate solutions Aapp

t and Φapp
t as follows. Since the limiting

configurations, by definition, agree with the limiting fiducial solution in a
neighbourhood of each marked point, and noting that (Afid

t ,Φfid
t ) converges
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exponentially in t to (Afid
∞ ,Φfid

∞ ) on any annulus { 1
2ε 6 |z| 6 ε}, we can use a

partition of unity to patch (Afid
t ,Φfid

t ) to (A∞,Φ∞) to obtain (Aapp
t ,Φapp

t ).
The error term, i.e., the deviation which measures the extent to which
these do not satisfy Hitchin’s equations, is supported in this annulus and
is exponentially small in t. For the second step we seek a small complex
gauge transformation g = exp γ which has the property that (Aapp

t , tΦapp
t )g

is an exact solution. Note that we may assume that γ is a section of the
bundle isu(E) of hermitian endomorphisms of E since this is transverse to
the infinitesimal real gauge transformations.

The second step requires more work. To set things up, fix a background
connection A0 and consider the Hitchin operator

Ht(A,Φ) = (H(1)
t ,H(2)

t ) = (F⊥A + t2[Φ ∧ Φ∗], ∂̄AΦ)

for connections A which are traceless relative to A0 and traceless Higgs
fields Φ. Consider also the orbit map

(4.1) O(A,Φ)(γ) = (Ag,Φg), g = exp(γ).

The goal is to find a pair (A,Φ) which lies in the nullspace of Ht ◦ O(A,Φ).
Since the condition ∂̄AΦ = 0 is complex gauge invariant, we may disregard
the second component of Ht, so it suffices to find a solution of

(4.2) Ft(γ) := H(1)
t ◦ O(A,Φ)(exp(γ)) = 0,

or more explicitly,

F⊥Ag + t2[Φg ∧ (Φg)∗] = 0, g = exp(γ).

Since we may assume that γ ∈ Ω0(isu(E)), we calculate first that

DO(A,Φ)
∣∣
g=Id (γ) = (∂̄Aγ − ∂Aγ, [Φ, γ])

and then that

DH(1)
t (Ȧ, Φ̇) = dA(Ȧ) + t2([Φ ∧ Φ̇ ∗] + [Φ∗ ∧ Φ̇ ])

whence

DFt(γ) = (∂A∂̄A − ∂̄A∂A)γ + t2([Φ ∧ [Φ, γ]∗] + [Φ∗ ∧ [Φ, γ]]).

Using the standard identities

2∂̄A∂A = FA − i ∗∆A, 2∂A∂̄A = FA + i ∗∆A,

as well as the fact that

[Φ ∧ [Φ, γ]∗] = −[Φ ∧ [Φ∗, γ]],
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we can write

(4.3) DFt(γ) = i ∗∆Aγ + t2MΦγ,

where
MΦγ := [Φ∗ ∧ [Φ, γ]]− [Φ ∧ [Φ∗, γ]].

We study instead the operator on Ω2(su(E)) given by

Lt(γ) = −i ∗DFt(γ) = ∆Aγ − i ∗ t2MΦγ.

A brief calculation, see [31], shows that if γ ∈ Ω0(isu(E)), then

(4.4) 〈Ltγ, γ〉 = ||dAγ||2 + 4 ||[Φ, γ]||2 > 0.

In particular, Ltγ = 0 if and only if [Φ, γ] = 0 and dAγ = 0.

The main analytic part of this gluing argument is to determine the map-
ping properties of the inverse of Lt, and to keep track of this behavior
uniformly in t. As part of this, we must also show that Lt is invertible.
To do all of this, decompose X into a union of disks Bε(pj) around each
pj and the complementary (or exterior) region X \ tBε(pj). Assume that
the underlying metric on X is Euclidean in each Bε(pj). We then analyze
the restriction of this operator to each disk, which we denote by Lint

t , with
Neumann boundary conditions. This is done using separation of variables
in polar coordinates, and is an explicit but lengthy computation. We see
from this that Lint

t is invertible and satisfies

||(Lint
t )−1||L(L2,L2) 6 C, ||(Lint

t )−1||L(L2,H2) 6 Ct2.

On the other hand, Lext
t , the restriction of Lt to the exterior region, is

independent of t, so it suffices only to check that it has no nullspace (with
Neumann boundary conditions). Integrating by parts as in (4.4) shows that
if γ is in the nullspace of Lext

t (with Neumann boundary conditons), then γ
is a parallel section (with respect to A∞ of the line bundle LΦ∞ of elements
γ which satisfy [Φ∞, γ] = 0, i.e., which commute with the limiting Higgs
field Φ∞. However, this line bundle is nontrivial around each pj and thus
has no parallel sections, so we conclude that γ = 0 and this nullspace is
trivial. Finally, a standard domain decomposition lemma shows that the
operator Lt is invertible on the entire surface X and satisfies

||L−1
t ||L(L2,L2) 6 C, ||L−1

t ||L(L2,H2) 6 Ct2.

The rest of the proof of the gluing theorem proceeds by expanding Ft
into its first order Taylor approximation plus remainder:

Ft(exp(γ)) = H(1)
t (Aapp

t ,Φapp
t ) + Ltγ +Qt(γ).
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Since Lt is invertible, the solutions of Ft(exp(γ)) = 0 are the same as
solutions of

γ = −L−1
t

(
H(1)
t (Aapp

t ,Φapp
t ) +Qt(γ)

)
,

or in other words, as fixed points of the mapping

T : Bρ → H2(isu(E)), γ 7→ −L−1
t

(
H(1)
t (Aapp

t ,Φapp
t ) +Qt(γ)

)
,

where Bρ is a ball in H2.
To show that T really does have fixed points, we show that it is a contrac-

tion when ρ is sufficiently small. The key points here are that the norm of
L−1
t grows polynomially in t while the error term H(1)

t (Aapp
t ,Φapp

t ) decays
exponentially in t.
We remark that the exact same proof can be used to desingularize limit-

ing configurations (A∞,Φ∞) where det Φ∞ has multiple zeroes. Indeed, we
simply use the corresponding family of fiducial solutions introduced ear-
lier. The more serious issue, however, is to understand families of solutions
near to these ones with multiple zeroes. As mentioned earlier, this is likely
possible using the forthcoming work of Fredrickson [13].

5. The hyperkähler metric

Now let us turn to a consideration of the natural L2, or Weil-Petersson,
metric on MΛ, the moduli space of solutions to the self-duality equa-
tion (2.4). As shown initially by Hitchin, this metric is of a very special
type.

Definition 5.1. — A manifold M4k endowed with a Riemannian met-
ric g and three integrable complex structures I1, I2 and I3 is called hyper-
kähler if

• g is Kähler with respect to Ij , j = 1, 2, 3;
• these complex structures satisfy the quaternion relations I1I2 = I3
etc.

As Hitchin shows, MΛ carries a natural hyperkähler metric on its smooth
locus; the smooth locus is the entire moduli space if d is odd [22], and this
metric is then complete by Uhlenbeck compactness. We recall next how
this metric arises through a moment map interpretation of the self-duality
equations.
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5.1. Moment maps

An action of a Lie group G on a symplectic manifold (M,ω) is called
hamiltonian if there exists a G-equivariant moment map µ : M → g∗

from M to the dual of the Lie algebra g of G. This map is defined by
the property that for v ∈ g, the smooth map µv(x) = µ(x)(v) satisfies
dxµv = ω(v](x), ·), where v](x) denotes the induced fundamental vector
field at x. If G acts freely and λ ∈ g∗ is central, the quotient µ−1(λ)/G
carries a natural symplectic structure inherited from M .

This symplectic quotient construction can be adapted to hyperkähler
manifolds as follows. Assume that there is a hamiltonian action by G with
respect to any of the three Kähler forms ωj = g(Ij ·, ·), j = 1, 2, 3. We then
assemble the individual symplectic moment maps µj into µ = (µ1, µ2, µ3),
which takes values in R3 ⊗ g∗. It turns out that for a central element λ ∈
R3⊗ g∗, the quotient µ−1(λ)/G inherits a natural hyperkähler metric [23].

This construction applies to our setting as follows [22]. The choice of
a base connection A0 identifies the space of unitary connections of fixed
determinant with Ω1(su(E)). This, in turn, can be identified with the com-
plex vector space A := Ω0,1(End0(E)), the complex conjugate of the space
of traceless Higgs fields Ω1,0(End0(E)). The L2-inner product

〈(α,Φ), (α,Φ)〉 = 2i
∫
X

Tr(α∗α+ ΦΦ∗)

gives the quaternionic vector space A×Ā the structure of a flat hyperkähler
manifold with Kähler forms ωj induced by the complex structures

I1(α,Φ) = (iα, iΦ), I2(α,Φ) = (iΦ∗,−iα∗), I3(α,Φ) = (−Φ∗, α∗).

Formally, the gauge group G acts in a hamiltonian fashion with moment
maps

µ1(A,Φ) = FA + [Φ ∧ Φ∗], µ2(A,Φ) = Re(∂̄AΦ), µ3(A,Φ) = Im(∂̄AΦ).

The L2-metric on A × Ā induces a hyperkähler metric on the quotient
µ−1(−µiω ⊗ Id, 0, 0)/G = MΛ.

Remark. — Note that for any (a, b, c) ∈ S2 ⊂ R3, the complex structure
I(a,b,c) := aI1 + bI2 + cI3 is an isometry for g. However, the corresponding
holomorphic structures on MΛ are not equivalent. In fact, (MΛ,±I1) is
biholomorphic to MΛ, while for any other complex structure defined by
S2 \ {(±1, 0, 0)}, (MΛ, I(a,b,c)) is biholomorphic to the moduli space of
irreducible projectively flat complex connections together with its natural
complex structure as discussed in the Remark of Section 2.2.
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5.2. The semi-flat metric

One of the most interesting open questions is to determine the asymp-
totic structure of the hyperkähler metric g onMΛ which we identify with
MΛ using the complex structure ±I1. Guiding any investigation into this
problem is the far-reaching conjectural picture by Gaiotto-Moore-Neitzke
[16, 17] which describes this metric as a perturbation series off a so-called
semi-flat metric gsf . More specifically, gsf is a metric on the open dense
set of the moduli space where the Higgs field Φ is simple, i.e., such that
det Φ has only simple zeroes. To understand the name ‘semiflat’, we recall
thatMΛ is the total space of a singular fibration det :MΛ → HQ, where
the base is the space of holomorphic quadratic differentials on X; this is
called the Hitchin fibration. The regular fibre of det is the Prym variety
associated with q, which is a torus of real dimension 6γ− 6, where γ is the
genus of X, cf. Section 2.4.
Restricting to the regular part of the fibration this data constitute an

algebraic completely integrable system and therefore the base carries a spe-
cial Kähler structure [14]. A special Kähler manifold is a Kähler manifold
(M, g, J, ω) together with an additional flat torsion-free connection ∇ on
TM satisfying ∇ω = 0 and d∇J = 0, where J is viewed as a TM -valued
1-form. As shown in [14] one may now use the horizontal distribution on
T ∗M to lift the metric g to the horizontal part of a hyperkähler metric
gsf on T ∗M . The restriction of gsf to each cotangent fibre is then a flat
metric, which explains the terminology. Moreover, since locally the total
space of the integrable system is represented as the quotient of T ∗M by a
family of lattices (parallel with respect to ∇), the semiflat metric descends
to a metric on the regular part of the Hitchin fibration, again denoted by
gsf . This metric is incomplete, however, and needs to be corrected in order
to extend over the singular fibres. A description of this correction process
using a wall-crosing formalism is one of the main achievements of the work
of Gaiotto, Moore and Neitzke.
The first application of our new construction of ‘large’ solutions inMΛ

shows that the hyperkähler metric g is indeed well approximated by the
semi-flat metric gsf far out in the ends of the moduli space. The way we
seek to approach this is as follows: As shown in [31], the space of limiting
configurations associated with q ∈ HQ with simple zeroes is a torus of real
dimension 6γ− 6, just like the Prym variety is. A family of limiting config-
urations (A∞(s),Φ∞(s)) associated with a curve of holomorphic quadratic
differentials q(s) may now, using Theorem 4.1, be perturbed into a family
of solutions (A(s), tΦ(s)) of Hitchin’s equation for sufficiently large t. After
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a suitable gauge choice, the derivative of this family with respect to s is a
tangent vector to MΛ which is vertical with respect to the Hitchin fibra-
tion. The L2-metric may now be directly evaluated on this tangent vector,
and is easily seen to be an exponentially small (in t) correction to the ver-
tical part of the semiflat metric as t→∞. Horizontal tangent vectors may
be obtained by varying q ∈ HQ, leading likewise to a comparison between
the horizontal parts of the metrics.
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